

C H A P T E R 1

Inside the Mercutio MDEF

Inside the Mercutio MDEF 1

The Mercutio MDEF is a Menu DEFinition resource that allow developers to easily and
elegantly extend the power of their application menus. Mercutio allow menus to have
multiple-modifier key-equivalents (e.g. shift-command-C), custom icons, item callbacks,
and other goodies. The Mercutio MDEF works under System 6.0.4 or later, with or
without Color QuickDraw.

For the latest information on Mercutio, go to:

http://www-leland.stanford.edu/~felciano/da/mercutio/

The Mercutio MDEF Package 1

The Mercutio MDEF package contains the following:

■ MercutioMDEF.rsrc: A fully functional version of the MDEF which contains the
resources needed to incorporate Mercutio into your applications.

■ Inside Mercutio.pdf: This document, which explains the features of Mercutio in detail.

■ Mercutio Software License.pdf: The software license that describes the conditions
under which you may use Mercutio.

■ Several release notes that describe the new features for this release.

In addition, there is a Sample Codeƒ folder that contains:

■ MercutioDemo(C) and MercutioDemo(Pascal): demonstration applications that
allows you to see Mercutio in action and try out its features.

■ Source code for the above applications.

■ Xmnu templates: TMPL resources for Mercutio’s preference resource. Includes
versions for ResEdit and Resorcerer.
The Mercutio MDEF Package 1-1
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 1

Inside the Mercutio MDEF

If you’re upgrading… 1

If you are upgrading from a previous version of Mercutio, note the following important
changes:

■ The format of Mercutio’s data structures has changed, and you will need to update
your API files. In particular, Mercutio’s style bit remapping uses a new FlexStyle
record instead of standard styles. See “FlexStyle” on page 10.

■ If you use version 1.2’s ‘Xmnu’ resources, you will need to rebuild them as well since
the format has changed. See “‘Xmnu’ resource” on page 9.

Here’s a quick summary of the changes in version 1.3:

■ Support for window font/size: Mercutio now correctly draws popup menus in the
current font and size. This means you can use Mercutio for Geneva 9-pt popup menus
and the like.

■ Graphic icons for non-printing keys: non-printing key equivalents such as page up/
down, home/help, etc. can be drawn as text or as icons that look like the keys on the
extended keyboard.

■ WorldScript support: Mercutio now correctly draws menus in non-western scripts
(e.g. Japanese, Arabian, etc.), and supports right-to-left system text justification.

■ Several new API calls related to the above changes. The GetCopyright callback
message ID has changed.

■ New format for the Xmnu resource.

■ Various cosmetic changes, optimizations and minor bug fixes. Substantially increased
stability; fixed several memory-related bugs.

■ Mercutio now has a web site:

http://www-leland.stanford.edu/~felciano/da/mercutio/

See the accompanying Release Notes for a full list of changes and bug fixes.

Conventions Used in this Manual 1

Inside the Mercutio MDEF uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain information, such
as parameter blocks, use special formats so that you can scan them quickly.
If you’re upgrading… 1-2
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 1

Inside the Mercutio MDEF

Special Fonts 1
All code listings, reserved words, and the names of actual data structures, constants,
fields, parameters, and routines are shown in Courier (this is Courier).

Types of Notes 1
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 3-23). ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 3-23.) ▲

▲ W A R N I N G

Warnings like this indicate potential severe problems that you should be
aware of as you design your application. Failure to heed these warnings
could result in system crashes and loss of data. (An example appears on
page 5-35). ▲

Technical Support 1

Digital Alchemy is a small design and consulting firm based in Palo Alto, California. We
specialize in graphic design, custom software development, and exotic human interfaces.

Other shareware products available from Digital Alchemy include:

■ CIconButton CDEF: a simple “icon button” CDEF that allows you to use
arbitrarily-sized color icon buttons in your applications.

■ VersionEdit: a drag-and-drop ‘Vers’ resource editor.

All technical support for Mercutio is provided through electronic mail. For fastest
response, please use the Internet e-mail address provided below.

U.S.Mail Digital Alchemy
P.O.Box 9632
Stanford, CA 94309-9632

Internet felciano@camis.stanford.edu

WWW http://www-leland.stanford.edu/~felciano/da/

Please feel free to contact us with comments, feature requests, or (gasp!) bug reports.
Technical Support 1-3
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 1

Inside the Mercutio MDEF

Quickstart! 1

For those of you that want to get started right away, here are the five basic steps to
integrate Mercutio into your application:

1. Copy the resources in the “MercutioMDEF.rsrc” file into your application’s resource
file. There are 3 resource types that are needed: the “Mercutio” MDEF resource, and the
“.MDEF Font” NFNT and FOND resources. Copy them all the resources in this file to
the resource file for your application. Do not renumber them.

2. Change the MDEF field in your MENU resources to 19999, the resource ID of the
Mercutio MDEF. Don’t change this resource number.

3. For Pascal, add the “Mercutio API.p” file to your project. For C, add the “Mercutio
API.c” and “Mercutio API.h” files to your project.

4. Replace any calls to the toolbox MenuKey routine with the with new MDEF_MenuKey
call. This replacement is needed in order to parse the additional modifier keys. Most
likely you will have an event loop routine that looks something like this:

CASE event.what OF
keyDown, AutoKey:

BEGIN

theKey := BitAnd(Event.message, charCodeMask);

IF (BitAnd(Event.modifiers, CmdKey) = CmdKey) THEN BEGIN

menuResult := menuKey(theKey);

if HiWord(menuResult) <> 0 THEN BEGIN

ProcessMenu(menuResult);

HiliteMenu(0);

END;

END;

ELSE BEGIN { cmd not down; handle typing if needed }

...

which should be changed to look like this:

CASE event.what OF
keyDown, AutoKey:

 BEGIN

 theKey := BitAnd(Event.message, charCodeMask);

 menuResult := MDEF_MenuKey(Event.message,

Event.modifiers, hAnMDEFMenu);

 IF HiWord(menuResult) <> 0 THEN BEGIN

 ProcessMenu(menuResult);

 HiliteMenu(0);

 END;
Quickstart! 1-4
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 1

Inside the Mercutio MDEF

 ELSE BEGIN { wasn’t caught by the menus }

 ...

Note

The third parameter to the MDEF_MenuKey routine must be a handle to
a menu that is using the Mercutio MDEF. ◆

5. Recompile your application.

That’s it! Run your program. Any menu item in condense style will show an option key
modifier in addition to the command key; any menu item in extend style with show an
shift key modifier in addition to the command key. If you want to use additional
modifier keys or Mercutio features, read on…
Quickstart! 1-5
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture

Basic Architecture 2

Mercutio provides a number of features that redefine the appearance and behavior of
Macintosh menus. Mercutio uses a technique called style-bit remapping to control these
features on a menu item by menu item basis. The features that are available through
style-bit remapping for a given menu are controlled feature templates.

Style-bit remapping 2

Menu items will typically differ in which Mercutio features they use: one will have a
command-shift key equivalent, the next has command-option, etc. Mercutio uses the
style field the standard item record to specify which features are used by a menu item.
Recall that the style field is a sequence of 8 bit flags, each of which turns a particular text
style on or off. The Macintosh toolbox provides a set of constants to manipulate this field
(normal = 0, bold = 1, italic = 2, underline = 4, etc.)

Figure 2-1 Sample menu item with text styles

The 8 bit codes of the style field are normally used as style flags to indicate the text style
of the menu item. Mercutio interprets certain style bits as feature flags instead of style
flags. This is called style-bit remapping, because a style bit is linked, or remapped, to
control something other than a text style. For example, by default, Mercutio interprets

myItem.style = [italic + underline + extend]

Bold1

Italic2

Underline3

Outline4

Shadow5

6

7

Unused8

Condense

Extend
Style-bit remapping 2-6
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture

the Condense style bit as a flag for the Option key, and the Extend style bit as a flag for
the Shift key. Thus an item that is formatted using the Extend text style will have a Shift
modifier key instead of a wider text style (Figure 2-2).

Figure 2-2 Sample menu item with Mercutio’s style-bit remapping

When a style bit is used to indicate whether or not a particular Mercutio feature is to be
used, that bit is called a feature flag. Mercutio’s feature flags let you control the
following six item-specific features:

■ The four modifier keys: command, shift, option, and control. See “Extended key
equivalents” on page 14.

■ Whether or not an item is a dynamic item. See “Dynamic items” on page 19.

■ Whether or not an item is a callback item. See “Callback items” on page 23.

Feature Templates 2

There are several potential problems with the style-bit remapping scheme:

■ What if you want an item to be drawn in extend format?

■ What if you want the item to be drawn in extend format and have the shift-key as a
modifier for the key equivalent?

■ If there are six features to flag, does that mean there are only 2 text styles left to use?

Mercutio addresses these problems by letting you select, on a menu-by-menu basis,
which Mercutio style bits to use as feature flags and which ones to use as style flags. For
example, if one menu uses the Condense and Extend text styles for several menu items,
but doesn’t use Outline or Shadow styles, you can use Outline and Shadow as feature
flags and restore the Extend and Condense bits to their normal function as style flags.
This is done through feature templates that tell Mercutio which style bits to map to
which features.

Every menu that uses Mercutio has its own mapping template. Thus, one menu might
use the Extend style to flag the Shift modifier, whereas the next uses the Italics style to
flag Shift but uses the Extend style to flag the Control modifier. Figure 2-1 shows how

myItem.style = [italic + underline + extend]

Bold1

Italic2

Underline3

Outline4

Shadow5

Option6

Shift7

Unused8
Feature Templates 2-7
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture

the same set of style bits can be interpreted differently depending on what feature
template is used.

Figure 2-1 Feature selection using a preference template

Note

You do not need to allocate a style bit to every Mercutio feature; use
only those features you need. In the examples in Figure 2-1, only one
modifier key is supported in each example (the Shift-key in the first
example, the Option-key in the second one). ◆

You can set the feature template for your menus programmatically using the
MenuPrefsRec data structure and the MDEF_SetMenuPrefs call. Listing 0-1 shows
how to set the feature flags for a menu using the first template in Figure 2-1.

Listing 0-1 Setting the feature flags for a menu

PROCEDURE SetMenuPrefs(theMenu : MenuHandle);
VAR

myPrefs: MenuPrefsRec;
BEGIN

WITH myPrefs DO BEGIN

m
y
I
t
e
m
.
s
t
y
l
e

=

[
i
t
a
l
i
c

+

u
n
d
e
r
l
i
n
e

+

e
x
t
e
n
d
]

Template Style field with
feature flags

Style field

Option
Shift

Bold1

Italic2

3

4

Shadow5

Option

6

Shift

7

Unused8

Condense

Extend

Bold1

Italic2

Underline3

Outline4

Shadow5

Option6

Shift7

Unused8

Option
Shift

Bold1

Italic2

Underline3

Outline4

Shadow5

6

7

Unused8

Condense

Extend
Feature Templates 2-8
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture
isDynamicFlag.s := [];
forceNewGroupFlag.s := [];
useCallbackFlag.s := [];
controlKeyFlag.s := [];
optionKeyFlag.s := [condense];
shiftKeyFlag.s := [extended];
cmdKeyFlag.s := [];
requiredModifiers := cmdKey;

END;
MDEF_SetMenuPrefs(theMenu, @myPrefs);

END;

IMPORTANT

For compatibility reasons, the default preferences are set to make
Mercutio behave the same way it did in version 1.1. In particular, the
Condense style bit flags the Option key, the Extend style bit flags the
Shift key, and the Command key is the default modifier. ▲

‘Xmnu’ resource 2
Instead of setting the features for your menus programmatically every time your
application launches, you can store the feature templates for your menus in Mercutio’s
Xmnu resources. As with the MenuPrefsRec record, the Xmnu resource stores settings
for individual menus, but not for menu items.

During menu initialization, Mercutio looks for an Xmnu resource with the same resource
ID as the menu’s menuID. If no Xmnu resource with a matching ID is found, Mercutio
looks for an Xmnu resource with ID 0. If no Xmnu resources are found, Mercutio uses the
default settings. Thus, you can set a default for all your application menus by including
an Xmnu resource with ID 0 in your resource fork.

TMPL resources for ResEdit and Resorcerer are included with Mercutio to help you fill
out these Xmnu resources.

Mercutio and Apple Guide 2

Apple Guide uses color and style for menu item coach marks. As developer, you can
choose how coach marks should visually hilight menu items; typically this is by drawing
the menu item underlined and red. You specify this setting when creating the Apple
Guide help file. When drawing a coached item, however, Apple Guide resets the style of
the menu item to plain before adding the coach styles. Thus, a menu item that is
bold-italic will be drawn red and underline, not red and bold-italic-underline. Clearly,
this will reset any style flags you are using with Mercutio.

The solution is to keep your Apple Guide styles separate from feature flag styles, and for
your Apple Guide file to use the same styles as your menu resource does:
Mercutio and Apple Guide 2-9
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture
■ If your application supports Apple Guide, choose the text style you will use for the
coach mark, and do not assign it as a Mercutio feature flag.

■ When defining your Apple Guide file, make sure the Coach Mark definitions include
all the necessary styles for that item. For example, if your menu item is normally
Condense-Italic, and you’ve decided that menu item coach marks will be red and
underlined, your coach mark definition for that menu item should be
Condense-Italic-Underline, not just Underline.

We are aware that this requires developers to manually synchronize their Apple Guide
files with their resource files, an awkward process at best. We are working with Apple to
see if there is a more elegant solution to this problem.

Data Structures 2

This section describes the FlexStyle record and the MenuPrefsRec record in detail as
well as the MenuResPrefs record.

FlexStyle 2
The FlexStyle record is a Pascal variant record structure that allows Mercutio to
perform style-bit manipulations quickly. You can treat the FlexStyle record like any
other Style data structure by using the s field of the data structure.

TYPE FlexStyle = PACKED RECORD CASE Boolean OF
false : (s : Style);

true : (val : SignedByte);

END;

MenuPrefsRec 2
The MenuPrefsRec record is the data structure that represents the feature template.
Every Mercutio feature is represented as a style field in the record; by setting this style
you indicate which style bit will be used to flag that feature. The only exception is the
requiredModifiers field, which is of type integer.

TYPE MenuPrefsPtr = ^MenuPrefsRec;
MenuPrefsRec = PACKEDRECORD

isDynamicFlag: FlexStyle;

forceNewGroupFlag: FlexStyle;

useCallbackFlag: FlexStyle;

controlKeyFlag: FlexStyle;

optionKeyFlag: FlexStyle;

shiftKeyFlag: FlexStyle;
Data Structures 2-10
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 2

Basic Architecture
cmdKeyFlag: FlexStyle;

unused: FlexStyle;

requiredModifiers: integer;

 END;

Field descriptions

isDynamicFlag Specifies which style bit will be used to flag whether the menu item
is part of a group of menu items defining a dynamic item.

forceNewGroupFlag
Specifies which style bit will be used to flag whether the item starts
a new dynamic item.

useCallbackFlag
Specifies which style bit will be used to flag whether the MDEF
should call the callback procedure before drawing the item.

controlKeyFlag Specifies which style bit will be used to flag the Control modifier
key.

optionKeyFlag Specifies which style bit will be used to flag the Option modifier key.
shiftKeyFlag Specifies which style bit will be used to flag the Shift modifier key.
cmdKeyFlag Specifies which style bit will be used to flag the Command modifier

key.
requiredModifiers

Specifies which modifiers will be used by default.

DESCRIPTION

The controlKeyFlag, optionKeyFlag, shiftKeyFlag, and cmdKeyFlag fields set
style-bits used to flag the corresponding modifier keys. For example, if the
controlKeyFlag field in the MenuPrefsRec is set to [bold], any menu items with
the bold style-bit set will be drawn with an option key equivalent (but not drawn in
boldface.)

You should only use single styles to control these features. For example, don’t set
controlKeyFlag to [bold, italic, underline].

If you don’t want to use a particular feature for a given menu, set the style field for that
feature to [].

The field requiredModifiers can be used enforce consistency across menu item key
equivalents. For example, if requiredModifers is set to cmdKey + optionKey, every
menu item with a key equivalent will require at least the Option- and Command-keys to
be held down (additional modifiers may be required if the appropriate style bits are set).

MenuResPrefs 2
Previous versions of Mercutio had a MenuResPrefs record to access the Xmnu resource.
This structure is no longer used in version 1.3.
Data Structures 2-11
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Using Mercutio 3

The following is a comprehensive list of the features supported by Mercutio and
instructions on how to use them in your software. Except as noted below, the Mercutio
MDEF behaves identically to the System 7 MDEF.

Extended Icon Support 3

Mercutio supports a wide variety of icon types and sizes, including color icons ('cicn')
and System 7 icon suites ('icl8', 'ICN#', etc.).

Figure 3-1 Icon support in Mercutio
Extended Icon Support 3-12
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
When determining which icon resource to use to display an icon, the Mercutio MDEF
follows a particular search order to find out exactly which icon is going to be displayed
(Table 3-2).

There is limited system software support for icon suites under System 6. However,
Mercutio tries to use whatever icon resources are available. If a 'icl8' is found for a
given menu item, it will be converted to a 'CICN' and used as the item’s icon. Similarly,
if an 'ICON' resource is not found, Mercutio will look for a 'ICN#' resource with the
same ID. This means you can develop one set of icons that will work for both System
6.0.4 and System 7.

Support for small icons 3
The System MDEF lets you include small icons (16 by 16 pixels, usually stored as sicn
resources) into menu items by putting $1E into the cmdChar field of the menu item
record. Unfortunately, this doesn’t allow you to use small icons in menu items with key
equivalents or hierarchical submenus, since they also use the cmdChar field. To address
this issue, Mercutio lets you draw icons with resource IDs above a certain value as small

Table 3-2 Mercutio icon search order

System Desired Size Search Order

7 32 x 32 System 7 Icon Suites
'cicn'
'ICON'
'ICN#'

7 16 x 16 System 7 Icon Suites
'cicn' (shrunk)
'ICON' (shrunk)
'ICN#' (shrunk)

6.0.4 32 x 32 'cicn'
'icl8'
'ICON'
'ICN#'

6.0.4 16 x 16 'cicn' (shrunk)
'icl8' (shrunk)
'SICN'
'ics#'
'ICON' (shrunk)
'ICN#' (shrunk)

6.0.4, B/W 32 x 32 'ICON'
'ICN#'

6.0.4, B/W 16 x 16 'SICN'
'ics#'
'ICON' (shrunk)
'ICN#' (shrunk)
Extended Icon Support 3-13
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
icons. By default, this ID value is 500: all icons with resource IDs 500 and above will be
drawn as small icons, regardless of the value of the cmdChar field. You can change this
value programmatically (see “MDEF_SetSmallIconIDPreference” on page 36).

Extended key equivalents 3

Mercutio supports an extended set of key equivalents for menu items. This includes
additional modifier keys as well as the non-printing keys on the keyboard (e.g. function
keys).

Support for all modifier keys 3
The Mercutio MDEF supports Option, Shift and Control as modifiers in addition to the
Command-key.

Caps-lock is not supported.

Figure 3-1

MDEF_MenuKey 3
In order to take advantage of Mercutio’s features, you must use the MDEF_MenuKey
routine instead of the standard Menu Manager MenuKey routine. The MDEF_MenuKey
routine checks against the various combinations of modifier keys that Mercutio allows;
the MenuKey routine only checks for the Command key.

FUNCTION MDEF_MenuKey (theMessage: longint; theModifiers: integer;

hMenu: menuHandle): longint;

The theMessage and theModifiers parameters can be taken directly from an event
record. The hMenu parameter must by a handle to a Mercutio menu; the MDEF_MenuKey
routine uses this handle to get at Mercutio’s private data. See “MDEF_MenuKey” on
page 32.
Extended key equivalents 3-14
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Modifier-defaults 3
By default, all key equivalent combinations include the command key. That is, if you
don’t set any additional feature flags but do fill in the cmdChar field for the menu item,
Mercutio assumes you require the Command key to be down for the key equivalent to
trigger. The defaultModifiers field in the MenuPrefs record lets you select which
modifier keys to use as the default modifiers.

Using modifier-defaults to add key equivalents to a Style menu 3

The modifier-defaults feature turns out to be particularly useful for Style menus. The
Macintosh Human Interface Guidelines suggest you use the styles to indicate the effects
of choosing an item from the style menu (See “Style menu normal and with
Command-Shift defaults” on page 15.) Since Mercutio uses the style bits to flag features,
it would seem that certain items can’t be drawn in their styles if we want the Style menu
to include additional modifiers.

In particular, at least one style can’t be drawn as a text style because it’s being used as a
feature flag. For example, if we use the Italic bit to flag the Shift-key, the third item in the
left menu in Figure 3-1 wouldn’t be drawn italics.

Figure 3-1 Style menu normal and with Command-Shift defaults

You can use the defaultModifiers field to address this problem. Listing 0-2 shows
how to set the default modifiers to be Command-Shift and clear the feature flags (by
setting the style fields in the MenuPrefs record to []). Using these settings, any menu
item with data in its cmdChar field will assume that the Command- and Shift-keys to be
held down for the key equivalent to trigger (the right menu in Figure 3-1).

Conventional Style Menu Desired Style Menu
Extended key equivalents 3-15
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Listing 0-2 Setting the feature flags for a menu

PROCEDURE SetStyleMenuPrefs(theStyleMenu : MenuHandle);
VAR

myPrefs: MenuPrefsRec;
BEGIN

WITH myPrefs DO BEGIN
isDynamicFlag.s := [];
forceNewGroupFlag.s := [];
useCallbackFlag.s := [];
controlKeyFlag.s := [];
optionKeyFlag.s := [];
shiftKeyFlag.s := [];
cmdKeyFlag.s := [];
requiredModifiers := cmdKey + shiftKey;

END;
MDEF_SetMenuPrefs(theStyleMenu, @myPrefs);

END;

Note

This defaultModifiers feature was added to Mercutio as a direct
result of user requests for a method of using additional modifiers for
Style menu items. Bear in mind that the Apple Human Interface
Guidelines have specific recommendations for key equivalents in the
Style menu (as shown in the image above); if you use other key
equivalents, you run the risk of interrupting the continuity of the user
experience. ◆
Extended key equivalents 3-16
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Support for non-printing key-equivalents 3

The Mercutio MDEF supports non-printing keys such as the function keys, page up,
page down, arrow keys, tab and delete. Certain non-printing key equivalents, such as
the Return, Enter, Tab, Clear and Help keys, can be displayed as icons or spelled out in
full text (Figure 3-1). Others, such as the Delete key, are only displayed as icons. You can
indicate your preference programmatically (see “MDEF_SetKeyGraphicsPreference” on
page 36).

Figure 3-1 Example of non-printing characters as key equivalents

The Mercutio MDEF interprets lowercase characters in the menu item’s cmdChar field as
these non-printing keys. For example, a lowercase A ('a') in the cmdChar field will
appear as Enter in the menu. Table 3-2 describes how the ASCII lowercase characters are
mapped to new values in order to support non-printing characters.

Note

Note that the arrow keys are the only non-printing keys that don’t have
lower-case equivalents (we ran out with only 26 lowercase letters to
choose from). You’ll need to enter these values ($80-$83) by hand using
ResEdit or another resource editor. ◆

Table 3-2 Mercutio ASCII character mapping

Char ASCII Becomes Key-Code
a 97 ($61) Enter $4C

b 98 ($62) Return $24

c 99 ($63) Tab $30

d 100 ($64) Num Lock $47

e 101 ($65) F1 $7A

f 102 ($66) F2 $78
Extended key equivalents 3-17
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Use ‘.MDEF Font’ for menu symbols 3
All keyboard symbols (modifiers and key equivalent characters) are stored in a custom
font called .MDEF Font. To use the Mercutio MDEF, you will need to copy this font
information (a NFNT/FOND resource pair) into the resource fork of your application.

Do not rename or renumber this font.

g 103 ($67) F3 $63

h 104 ($68) F4 $76

i 105 ($69) F5 $60

j 106 ($6A) F6 $61

k 107 ($6B) F7 $62

l 108 ($6C) F8 $64

m 109 ($6D) F9 $65

n 110 ($6E) F10 $6D

o 111 ($6F) F11 $67

p 112 ($70) F12 $6F

q 113 ($71) F13 $69

r 114 ($72) F14 $6B

s 115 ($73) F15 $71

t 116 ($74) Help $72

u 117 ($75) Del $33

v 118 ($76) Forward Del $75

w 119 ($77) Home $73

x 120 ($78) End $77

y 121 ($79) Page Up $74

z 122 ($7A) Page Down $79

128 ($80) Up Arrow $7E

129 ($81) Down Arrow $7D

130 ($82) Left Arrow $7B

131 ($83) Right Arrow $7C

Table 3-2 Mercutio ASCII character mapping

Char ASCII Becomes Key-Code
Extended key equivalents 3-18
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Dynamic items 3

Dynamic menu items are items that change appearance and behavior depending on
what modifier keys are being held down. This is useful for closely-related commands,
rarely-used commands, power-user commands, or other situations where you want to
provide functionality without cluttering your menus. Several commercial applications
use this kind of menu. For example, the THINK Pascal® “Run” menu changes its
appearance if the shift-key is held down (Figure 3-1)

Figure 3-1 Menu in THINK Pascal®

You can accomplish the same thing using Mercutio (Figure 3-2). The main difference is
that Mercutio will also display the modifier keys being held down.

Figure 3-2 Menu with Mercutio

Mercutio does this by grouping sets of menu items, called item alternates, that occupy
the same location in the menu—the actual item from this set that is displayed depends
on the modifier keys held down by the user. Obviously, not every menu item will have
alternates, so not all items will change when modifier keys are held down. For example,
the “Build” command in Figure 3-2 above doesn’t change.

Normal With Shift-key held down

Normal With Shift-key held down
Dynamic items 3-19
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Note

For a dynamic menu item to switch to its alternate, the user must hold
down the alternate’s modifier combination exactly. In Figure 3-2, if the
user holds down Option- and Shift-, the menu would display “Check
Syntax”, not “Compile”. ◆

Using Dynamic Items in Mercutio 3

You establish a set of item alternates by grouping them sequentially in the MENU
resource. Mercutio considers a sequence of menu items as a group if they:

1. Have the isDynamic flag set.

2. Share the same key equivalent.

The first item in the set is the one that is initially displayed when the menu appears; the
subsequent ones are alternates that will appear if their particular combination of
modifiers is held down.

You may want to have two dynamic items next to each other that share the same key
equivalent character. You can force a separation between two groups of items that share
the same key equivalent character with the ForceNewGroup flag.

Listing 0-3 shows how to set the feature template for a menu that uses the Condense
style bit to flag the Option key, the Extend style bit to flag the Shift key, and the Outline
style bit to flag dynamic items (i.e. the default behavior plus support for dynamic items).

Listing 0-3 Setting the feature flags for a menu

PROCEDURE SetMyMenuPrefs(theStyleMenu : MenuHandle);
VAR

myPrefs: MenuPrefsRec;
BEGIN

WITH myPrefs DO BEGIN
isDynamicFlag.s := [outline];
forceNewGroupFlag.s := [];
useCallbackFlag.s := [];
controlKeyFlag.s := [];
optionKeyFlag.s := [condense];
shiftKeyFlag.s := [extended];
cmdKeyFlag.s := [];
requiredModifiers := cmdKey;

END;
MDEF_SetMenuPrefs(theStyleMenu, @myPrefs);

END;
Dynamic items 3-20
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Using this feature template, any sequence of menu items with their Outline bits set and
with the same key equivalent will be considered item alternates for a single dynamic
item. Figure 3-1 shows a “Print” menu item with four item alternates that will toggle
depending on what menu items are held down.

Figure 3-1 Dynamic “Print” menu item with 4 alternates

A more complete example of how to design and build Dynamic Items for your
application is shown in Figure 3-2 on page 3-22.

Note

Mercutio searches sequentially through all the alternates for a given
item, and selects the first match; if there are several alternates that have
the same modifier sequences and key equivalent, only the first one will
be available to the user. ◆

Item alternates for a
single dynamic item

No modifiers held down

Option-key held down

Shift-key held down

Option- and Shift-keys held down

Any other modifier combination held down
Dynamic items 3-21
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Figure 3-2 Scenario demonstrating Dynamic Items

implicit end-of-group (separator, not in outline style)

Group 1

Group 2

Group 4

Group 3

Group 5

Group 6

explicit end-of-group (italic style)

implicit end-of-group (new key equiv.)

implicit end-of-group (new key equiv.)

We want to create a menu that supports three
key equivalents (the default Command-, plus
Option- and Shift-), and uses Dynamic items. *

First we decide how we'd like the menu to look
and behave. In our example, we try to enforce a
simple interface rule when appropriate: the Op-
tion-key toggles between single and multiple
objects (e.g. “Add File…” vs. “Add Files…”).

Now that we know what items will be in the
menu, and where and when they will appear,
we need to decide how to indicate flag the dif-
ferent features on each menu item. In particu-
lar, we decide which bits in the menu item's
style field will be used as feature flags.

with Option and Shift
keys down

with Option key down

with Shift key down

default

We decide we want to use the Italic, Outline, Condense and Extend
styles to control the various feature settings. This gives us a style
field and feature template as represented on the left. We can now
assign these preference settings to the menu programmatically us-
ing MDEF_SetMenuPrefs, or via an 'Xmnu' resource.

Finally, we build our menu using our favorite resource editor.
Note that all the items are outlined (since they all belong to one
of the groups of dynamic items), and that, with one exception,
we don’t need to indicate where one group ends and another
starts, since Mercutio implicitly uses a change of key equiva-
lent character as an end-of-group marker.

In this example, we will set the preferences programmatically.
We fill out a MenuPrefsRec record to represent our feature
template, and call MDEF_SetMenuPrefs. Note that we set the
requiredModifiers field as well (that is, in our menu, the
default modifier key for key equivalents is Command-).

WITH prefs DO BEGIN
 optionKeyFlag.s := [condense];
 shiftKeyFlag.s := [extend];
 cmdKeyFlag.s := [];
 controlKeyFlag.s := [];
 isDynamicFlag.s := [outline];
 forceNewGroupFlag.s := [italic];
 useCallbackFlag.s := [];
 requiredModifiers.s := cmdKey;
END;
MDEF_SetMenuPrefs(hMenu, @prefs);

Bold1

newGroup2

3

4

Shadow5

Underline

6

Dynamic

7

Unused8

Option
Shift

newGroup

Dynamic

Option
Shift

* This example is based on the sample code in the Mercutio package; a notable differ-
ence is that the sample code also uses the Underline style to flag Callback items.
Dynamic items

©1992-1996 Ramon M. Felciano
3-22
Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Callback items 3

Callback items allow you to determine the contents of a menu item at runtime. This is
for situations where you don’t know the contents of the item ahead of time. For example,
a “File Type” menu might include icons from applications that the user has on the hard
drive; you could use dynamic items to pull the icons out of the Desktop Database at
runtime.

Mercutio allows you to associate a callback procedure with a Mercutio menu, and flag
certain items as callback items. Before drawing any callback item, Mercutio will load in
the item data (item text, icon handle, item modifiers, enabled state, etc.) from the MENU
resource, then call the callback procedure in your application to give you the
opportunity to modify the data before the item is displayed.

Note

Style bits are interpreted before your callback procedure is called. Since
the item text is drawn in whatever style is returned from the callback
procedure, your callback procedure can set the item’s text style safely
without affecting the modifier keys or other features. ✦

The Callback Procedure 3
The callback procedure is called for each menu item whose useCallback flag is set.
The callback procedure receives a record with the item’s data, as well as a message field
which indicates what fields the procedure may change. The callback procedure has the
following header:

PROCEDURE MyCallbackProc (menuID: integer; previousModifiers:
integer; VAR itemData: RichItemData);

The previousModifiers field is supplied in case you want to compare the current
modifiers against those held down the last time this item was referenced.

A callback procedure gets called several times for each menu item because Mercutio
requires different information at different times. The cbMsg field indicates what fields
Mercutio wants filled in. There are three values it can take:

cbBasicDataOnlyMsg = 1;
cbIconOnlyMsg = 2;

cbGetLongestItemMsg = 3;

Depending on the value of cbMsg, different fields are filled in and available for changing
by the callback procedure (See “RichItemData” on page 25.)

Listing 0-4 shows the structure of a typical callback procedure.
Callback items 3-23
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Listing 0-4 Sample callback procedure

PROCEDURE MyCallbackProc (menuID: integer;
 previousModifiers: integer;
 VAR itemData: RichItemData);

BEGIN
itemData.changedByCallback := false;
CASE itemData.itemID OF

3 :
BEGIN

CASE itemData.cbMsg OF
cbBasicDataOnlyMsg : BEGIN

… fill in data for item 3
END;

cbIconOnlyMsg : BEGIN
… fill in icon data for item 3
END;

cbGetLongestItemMsg: BEGIN
… fill in longest data for item 3
END;

itemData.changedByCallback := true;
END;

7 :
BEGIN

CASE itemData.cbMsg OF
cbBasicDataOnlyMsg : BEGIN

… fill in data for item 7
END;
cbIconOnlyMsg : BEGIN

… fill in icon data for item 7
END;

cbGetLongestItemMsg: BEGIN
… fill in longest data for item 7
END;

END;
itemData.changedByCallback := true;

END;

… et al for other callback menu items …
END; { CASE itemData.itemID }

END;
Callback items 3-24
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
RichItemData 3
This is record stores information about the contents, behavior, and visual appearance of a
single menu item. The first four fields are the same as the four-byte header for each
menu item in a MENU resource.

TYPE richItemData = PACKED RECORD
iconID: Byte;

keyEq: char;

 mark: char;

textStyle: FlexStyle;

itemID: integer;

itemRect: rect;

flags: itemFlagsRec;

iconType: ResType;

hIcon: Handle;

pString: stringPtr;

itemStr: str255;

cbMsg: integer;

END;

richItemPtr = ^richItemData;

Field descriptions

iconID Resource ID of the item’s icon.
keyEq ASCII value of the key equivalent.
mark ASCII value of the mark symbol.
textStyle Font face to use when displaying the menu item.
itemID Position of the item in the menu.
itemRect Coordinates of where the item will be drawn.
flags Mercutio feature flags (interpreted from the item style).
iconType 4-character resource type for the icon.
hIcon Handle to the icon data.
pString Pointer to the item string.
itemStr Storage for the item string.

DESCRIPTION

If you supply a handle to a new menu icon in hIcon, be sure to set the iconType field
as well.

The iconType field indicates to what type of icon data hIcon points. Usually this is one
of the standard resource types ('ICON',' sicn', 'cicn'). It can also be 'suit' if you
use System 7 icon suites.
Callback items 3-25
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio

The hIcon field is a handle to icon data. Mercutio will dispose this handle after drawing
the icon unless the callback procedure sets the dontDisposeIcon flag in the flags
field.

The pString field points to the menu item’s text string. By default, it points to the
beginning of the itemStr field which holds the item text from the menuHandle. You
can change it to point to another string, or change the itemStr field directly.

The cbMsg field takes one of 3 values:

■ cbBasicDataOnlyMsg = 1: fill in the non-icon data fields only.

■ cbIconOnlyMsg = 2: fill in the icon data fields only.

■ cbGetLongestItemMsg = 3: fill in the longest possible menu item. Mercutio uses
this item to determine the maximum width of the menu. You should determine what
the longest item would be (i.e. longest item text, biggest icon, most modifiers, etc.),
and return it.

The following sections explain what fields are available to you for changing.

n → : Mercutio fills this field with data, but you should not change it.
n ↔ : Mercutio fills this field with data; you may change it.
n ← : Mercutio needs this field; you should fill it in.
n ⊗ : This field contains invalid data; you should not change it.

Table 3-1 explains what fields are available to you for changing depending on the value
of cbMsg.

Table 3-1 Field permissions for callback messages in cbMsg

Field cbBasicDataOnlyMsg cbIconOnlyMsg cbGetLongestItemMsg

iconID ↔ ↔ ↔

keyEq ↔ ⊗ ↔

mark ↔ ⊗ ↔

textStyle ↔ ⊗ ↔

itemID → → →

itemRect → → →

flags ↔ ⊗ ↔

iconType ⊗ ↔ ↔

hIcon ⊗ ← ↔

pString ↔ ⊗ ↔

itemStr ↔ ⊗ ↔

cbMsg → → →
Callback items 3-26
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
If your callback procedure does change any of the fields, you must set the
changedByCallback flag in the itemFlagsRec.

IMPORTANT

Mercutio relies on the setting of the changedByCallback flag to
determine whether any information has changed. If the flag is not set,
Mercutio will ignore any changes you made to the record. ◆

ItemFlagsRec 3
This is a record structure used to flag the features of a given menu item. It is derived by
the MDEF from the style field and the MenuPrefsRec as described above.

TYPE ItemFlagsPtr = ^ItemFlagsRec;
ItemFlagsRec = PACKED RECORD

{ high byte }

forceNewGroup: boolean;

isDynamic: boolean;

useCallback: boolean;

controlKey: boolean;

optionKey: boolean;

unused10: boolean;

shiftKey: boolean;

cmdKey: boolean;

{ low byte }

isHier: boolean;

changedByCallback: boolean;

Enabled: boolean;

hilited: boolean;

iconIsSmall: boolean;

hasIcon: boolean;

sameAlternateAsLastTime:boolean;

dontDisposeIcon: boolean;

END;

Field descriptions

forceNewGroup A Boolean value indicating whether or not the menu item forces the
start of a new group of item alternates for a dynamic item. Mercutio
ignores this field if the isDynamic field is not set to TRUE.

isDynamic A Boolean value indicating whether or not the menu item is part of
a group of item alternates for a dynamic item.

useCallback A Boolean value indicating whether or not the menu item will call a
callback procedure before being drawn. Mercutio ignores this field
Callback items 3-27
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
if the menu has no callback procedure associated with it (See
“MDEF_SetCallbackProc” on page 33.)

controlKey A Boolean value indicating whether or not the menu item uses the
Control key as a modifier for the key equivalent. Ignored if the
keyEq field of the RichItemData record is empty.

optionKey A Boolean value indicating whether or not the menu item uses the
Option key as a modifier for the key equivalent. Ignored if the
keyEq field of the RichItemData record is empty.

unused10 Reserved for future use.
shiftKey A Boolean value indicating whether or not the menu item uses the

Shift key as a modifier for the key equivalent. Ignored if the keyEq
field of the RichItemData record is empty.

cmdKey A Boolean value indicating whether or not the menu item uses the
Command key as a modifier for the key equivalent. Ignored if the
keyEq field of the RichItemData record is empty.

isHier A Boolean value indicating whether or not the menu item is a
hierarchical menu item. Mercutio sets this to true if the data from
the MENU resource shows a value of hMenuCmd ($1B) in the item’s
keyEq field.

changedByCallback
A Boolean value indicating whether or not any of the fields in this
record or in the RichItemData record have been changed by the
callback procedure.

enabled A Boolean value indicating whether the menu item will be drawn
enabled or disabled.

hilited A Boolean value indicating whether the menu item will be drawn
hilited or not.

smallIcon A Boolean value indicating whether or not the menu item is a
hierarchical menu item. Mercutio sets this to true if the data from
the MENU resource shows a value of ($1E) in the item’s keyEq field,
or if the item’s icon field shows a value of 500 or greater (See
“Support for small icons” on page 13.)

hasIcon A Boolean value indicating whether or not the menu item has an
icon associated with it. Mercutio sets this to true if the data from the
MENU resource shows a non-zero value in the item’s icon field.

sameAlternateAsLastTime A Boolean value indicating whether or not the item has
changed since the last time the callback was called for this item. If
set to true and the item is a dynamic item, Mercutio will not
redraw it to avoid unnecessary flicker.

dontDisposeIcon A Boolean value indicating whether or not Mercutio should
dispose the handle to icon data. Ignored if hIcon is NIL.

DESCRIPTION

This set of flags control most of Mercutio’s features, including whether or not an item is a
callback item or not.
Callback items 3-28
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 3

Using Mercutio
Mercutio and resource IDs 3

Please do not renumber the MDEF or Font resource IDs in the Mercutio package. The IDs
must remain intact for Mercutio to work.

■ Since Mercutio overrides the toolbox MenuKey procedure, it needs to support regular
menus as well as Mercutio menus. To distinguish between the two, Mercutio checks
the MDEF field in each menu, and compares it against its resource ID of 19999. Thus, if
you renumber Mercutio, it will no longer recognize menus that it controls.

■ Applications that use Mercutio must store font information in their resource forks.
The IDs of this font could potentially interfere with fonts installed in the user’s
System Folder. In order to avoid having the Font Manager manipulate the fonts in the
application fork, their IDs must be from in a particular range of numbers:

Developers who use a font as a method of storing symbols which
are used in a palette, or store a font in the resource fork of their
application for some other special purpose, should use numbers in
the range 32,256-32,767. This range is not associated with any script.
(from “TE2 : Font Family Numbers”).

We recognize that this restriction on renumbering is undesirable and are considering
alternative solutions for future releases of Mercutio.
Mercutio and resource IDs 3-29
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 4

The MDEF Messages
The MDEF Messages 4

MDEFs are code resources that function by responding to a series of messages sent by
the Menu Manager. There are 7 messages that all System 7 compatible MDEFs should
recognize; Mercutio recognizes these 7 plus several others needed to control the various
features and settings in Mercutio menus.

MDEFs are procedures with the following header:

Listing 0-5 Menu definition procedure header

PROCEDURE MyMDEF (message: Integer; theMenu: MenuHandle;
VAR menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

The parameters are interpreted differently depending on the value of the message
parameter. Table 4-1 describes all of the messages understood by the Mercutio MDEF.

Table 4-1 Mercutio MDEF Messages (italics indicate non-standard messages)

Message Call

areYouCustomMsg Used to determine whether the MDEF is one of Digital
Alchemy’s custom MDEFs or not. If so,
menuRect.topLeft will contain the 4 character resType
'CUST'.

getVersionMsg Returns the MDEF version number in menuRect.topLeft
(typecast to a longint)

getCopyrightMsg Returns a StringHandle to the MDEF copyright information
in menuRect.topLeft.

setCallbackMsg Set the callback procedure for the MDEF to the procedure
pointed to in hitPt.

stripCustomDataMsg Dispose any custom data structures setup by the MDEF.
Mercutio and resource IDs 4-30
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 4

The MDEF Messages
Note

Table 4-1 is provided for informational purposes only; in order to
encourage compatibility with future versions of Mercutio, you should
use the wrapper routines provided in the C and Pascal API files,
described in Chapter 5, “Mercutio API Routines.” ◆

setPrefsMsg Set menu preferences (feature template) to the MenuPrefsRec
record pointed to in hitPt.

mMenuKeyMsg Given a keyboard event, determine whether it maps to a key
equivalent in one of the currently installed menus (both custom
and standard menus are checked).

mDrawItemStateMsg Draw menu item itemID in rectangle menuRect. If hitPt.h =
1, the item is drawn in hilited state. If hitPt.v = 0, the item is
drawn disabled.

mDrawMsg Draw the entire menu within menuRect

mChooseMsg Unhilite menu item itemID, hilite the item under point hitPt,
and return the ID of that item in itemID.

mSizeMsg Calculate the size of the menu and store values in the
menuHeight and menuWidth fields of theMenu

mPopUpMsg Calculate the rectangle in which the popup should appear, and
return it in menuRect.

mDrawItemMsg Draw menu item itemID in rectangle menuRect.

mCalcItemMsg Calculate the rectangle of menu item itemID. The top and
left fields of menuRect should be filled in; the MDEF will
calculate the right and bottom fields

Table 4-1 Mercutio MDEF Messages (italics indicate non-standard messages)

Message Call
Mercutio and resource IDs 4-31
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 5

Mercutio API Routines
Mercutio API Routines 5

The following routines are provided in the C and Pascal application programming
interface (API). At the very least, you will need to use the MDEF_MenuKey routine to
trap key equivalents using the Mercutio MDEF.

MDEF_MenuKey 0

The MDEF_MenuKey function finds the menu and item associated with a keypress.

FUNCTION MDEF_MenuKey (theMessage: longint; theModifiers: integer;
hMenu: menuHandle): longint;

theMessage The message field from an Event record
theModifiers The modifiers field from an Event record
hMenu A handle to a menu that uses the Mercutio MDEF.

DESCRIPTION

MDEF_MenuKey is a replacement for the standard toolbox call MenuKey for use with the
Mercutio MDEF. Given the keypress message and modifiers parameters from a standard
event record, it checks to see if the keypress is a key-equivalent for a particular menu
item.

If you are currently using custom menus (i.e. menus using a Mercutio MDEF), pass the
handle to one of these menus in hMenu. If you are not using custom menus, pass in NIL
or another menu, and MDEF_MenuKey will use the standard MenuKey function to
interpret the keypress.

As with MenuKey, MDEF_MenuKey returns the menu ID in high word of the result, and
the menu item in the low word.
MDEF_MenuKey 5-32
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 5

Mercutio API Routines
MDEF_SetCallbackProc 0

The MDEF_SetCallbackProc procedure sets the callback procedure.

PROCEDURE MDEF_SetCallbackProc (menu: MenuHandle; theProc:
procPtr);

menu A handle to the specified menu record.
theProc A pointer to the callback procedure.

DESCRIPTION

The MDEF_SetCallbackProc procedure sets the procedure that will be called for each
item before it is drawn. The procedure is also called during the SizeMenu message call.
The callback routine should have the following header:

PROCEDURE MyGetItemInfo (menuID: integer;
 previousModifiers: integer;

 VAR itemData: RichItemData);

menuID The ID of the menu that is being referenced. Note: the itemData
record contains the ID of the item itself.

previousModifierThe state of the modifiers the last time the callback procedure was
called. You may want to use this to set the dirty flag (see below).
Only the high-byte of this parameter is valid.

itemData A parameter block data structures. The validity and read-write state
of the fields is defined by the cbMsg field as described below.

For more information on how to use callback procedures with Mercutio, see “Callback
items” on page 3-23, or check the sample code that came with Mercutio.

MDEF_CalcItemSize 0

The MDEF_CalcItemSize procedure calculates and returns the coordinates of the
rectangle in which the menu item will be displayed.

PROCEDURE MDEF_CalcItemSize (menu: MenuHandle; item: integer;
VAR theRect: rect);

menu A handle to the specified menu record.
item The number of the menu item.
theRect Holds the top and left coordinates of the desired rectangle. When

the procedure returns, the bottom and right coordinates are filled in.
MDEF_SetCallbackProc 5-33
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 5

Mercutio API Routines
DESCRIPTION

MDEF_CalcItemSize will calculate the height and width for a given menu item. It
assumes that theRect.top and theRect.left of theRect are filled in; Mercutio will
fill in theRect.bottom and theRect.right.

MDEF_DrawItem 0

The MDEF_DrawItem procedure draws a menu item in the specified location.

PROCEDURE MDEF_DrawItem (menu: MenuHandle; item: integer;
destRect: rect);

menu A handle to the specified menu record.
item The number of the menu item.
destRect The rectangle where the item should be drawn.

DESCRIPTION

The MDEF_DrawItem procedure will draw a given item in the rectangle you specify.
This is useful for drawing popup menus that should show the current menu item as it
would be drawn by Mercutio (Figure 5-1). The sample code provided with Mercutio
demonstrates how to do this.

Figure 5-1 Popup menu drawn with MDEF_DrawItem

MDEF_DrawItemState 0

The MDEF_DrawItemState procedure draws a menu item at a specified location and in
the specified enabled and hilited states.

PROCEDURE MDEF_DrawItemState (menu: MenuHandle; item: integer;
destRect: rect; hilited, enabled: boolean);

menu A handle to the specified menu record.
item The number of the menu item.
destRect The rectangle where the item should be drawn.
hilited Whether the item should be drawn hilited or not.
MDEF_DrawItem 5-34
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 5

Mercutio API Routines
enabled Whether the item should be drawn enabled or not.

DESCRIPTION

The MDEF_DrawItemState procedure allows you to override the menu item’s
hilited and enabled settings.

MDEF_StripCustomMenuData 0

The MDEF_StripCustomMenuData procedure will remove any custom data allocated
by the Mercutio MDEF for the specified menu.

PROCEDURE MDEF_StripCustomMenuData (menu: MenuHandle);

menu A handle to the specified menu record.

DESCRIPTION

MDEF_StripCustomMenuData will remove any custom data allocated by the Mercutio
MDEF. Use this before writing a Mercutio menu to disk as a MENU resource.

▲ W A R N I N G

If you write your MENU resource to disk before calling MDEF_StripCustomMenuData, it
may not initialize correctly the next time you load the menu and have Mercutio display
it. ▲

MDEF_SetMenuPrefs 0

The MDEF_SetMenuPrefs procedure sets the feature preferences for the specified menu.

PROCEDURE MDEF_SetMenuPrefs (menu: MenuHandle; pPrefs:
MenuPrefsPtr);

menu A handle to the specified menu record.
pPrefs A pointer to the Mercutio preferences data structure.

DESCRIPTION

The MDEF_SetMenuPrefs procedure lets you determine which style bits for the menu
items will be interpreted as feature flags for the MDEF.

The pPrefs pointer should point to a MenuPrefs record which holds the settings for
the current menu. Mercutio makes a copy of these preferences and stores them internally,
so the data structure may be disposed of after the call to MDEF_SetMenuPrefs returns.

You can call MDEF_SetMenuPrefs repeatedly to change the preferences of a menu.
MDEF_StripCustomMenuData 5-35
©1992-1996 Ramon M. Felciano Rev. 9/5/96

1 C H A P T E R 5
If the preferences you are setting can impact the height or width of the menu (e.g.
allowing new modifier keys which could make certain menu items wider), you must call
CalcMenuSize on the menu after the MDEF_SetMenuPrefs call.

MDEF_SetKeyGraphicsPreference 0

The MDEF_SetKeyGraphicsPreference procedure sets whether a menu will display
non-printing keys as graphics or as text strings.

PROCEDURE MDEF_SetKeyGraphicsPreference (menu: MenuHandle;
preferGraphics: boolean);

menu A handle to the specified menu record.
preferGraphics A boolean indicating whether non-printing key equivalents should

be drawn as graphic icons or as text.

DESCRIPTION

The MDEF_SetKeyGraphicsPreference procedure lets you determine how all
Mercutio menus display non-printing keys such as Page Up, Page Down, Home,
Function Keys, etc.

To see an example of the effect of changing this preference, see “Example of non-printing
characters as key equivalents” on page 17.

MDEF_SetSmallIconIDPreference 0

The MDEF_SetSmallIconIDPreference procedure sets the ID above which all icons
will be drawn as small sized icons.

PROCEDURE MDEF_SetSmallIconIDPreference (menu: MenuHandle;
iconsSmallAboveID: integer);

menu A handle to the specified menu record.
iconsSmallAboveID An integer representing the resource ID above which icons will be

drawn small.

DESCRIPTION

The MDEF_SetSmallIconIDPreference procedure lets you determine what size
icons in menu items are drawn. As with the System MDEF, menu items with $1E in the
cmdChar field of the menu item will have icons drawn at a 16 by 16 pixel size, rather
than the default 32 by 32 pixel size.
MDEF_SetKeyGraphicsPreference 5-36
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 5

Mercutio API Routines
However, because the is also used for key equivalents, the System MDEF doesn’t allow
small icons in menu items with key equivalents. To address this limitation, the Mercutio
MDEF draws any icons with resource IDs above 500 at the small size (16 by 16 pixels).
MDEF_SetSmallIconIDPreference lets you change this resource ID threshold.

MDEF_IsCustomDef 0

The MDEF_IsCustomDef function returns TRUE if the menu is being controlled by a
Digital Alchemy MDEF.

FUNCTION MDEF_IsCustomDef (menu: MenuHandle): boolean;

menu A handle to the specified menu record.

DESCRIPTION

This function checks an “author code” embedded in the MDEF.

Note

MDEF_IsCustomDef will return false if another MDEF is controlling the menu. ◆

MDEF_GetCopyright 0

The MDEF_GetCopyright function returns a Pascal string containing the copyright
notice for Mercutio.

FUNCTION MDEF_GetCopyright (menu: MenuHandle): str255;

menu A handle to the specified menu record.

DESCRIPTION

The string returned by MDEF_GetCopyright is the appropriate notice to use in
manuals and About boxes. For more information on when to use this, see “Licensing and
Distribution” on page 7-41.

MDEF_GetVersion 0

The MDEF_GetVersion function returns a version number for Mercutio.

FUNCTION MDEF_GetVersion (menu: MenuHandle): longint;

menu A handle to the specified menu record.
MDEF_IsCustomDef 5-37
©1992-1996 Ramon M. Felciano Rev. 9/5/96

1 C H A P T E R 5
DESCRIPTION

The version number returned by MDEF_GetVersion is in the same format as the “short
version” information as normally stored in a 'vers' resource.
MDEF_GetVersion 5-38
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 6

Compatibility
Compatibility 6

Mercutio attempts to be compatible with the System 7 MDEF default behavior whenever
possible. This chapter summarizes the differences in appearance and behavior between
Mercutio and the System 7 MDEF (aside from the obvious additional features that
Mercutio provides.)

Saving MENU resources 6
Mercutio stores custom data at the end of the menu’s handle. This data must be
initialized at application startup. Because of this, it is important that you don’t save your
MENU resources back to your application’s resource fork. If you do, the next time you
launch the program, Mercutio will use the old outdated data.

Note that any such UI changes that need to persist from one session to the next should
be stored in the Preferences folder, not to the application itself. This is particularly
important in order to let your application run off of CD-ROMs and other locked volumes.

Hierarchical menu glitch 6
When moving back and forth between two adjacent hierarchical menus, the hierarchical
menu sometimes appears near the top of the parent menu item, and sometimes near the
bottom. According to Apple’s Developer Technical Support, this is a bug in the Menu
Manager that the system MDEF hacks to get around. Because this is a relatively minor
cosmetic glitch, we decided against making illegal forays into the internal Menu
Manager structures in order to fix it.

Better scroll positioning 6
The system MDEF occasionally leaves a gap at the bottom of a scrolling menu instead of
extending to the bottom of the screen; Mercutio doesn’t do this. This is probably a
side-effect of some assumptions they make for speed optimizations.
MDEF_GetVersion 6-39
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 6

Compatibility
MenuKey compatibility 6
The standard toolbox MenuKey routine ignores the shift key; MDEF_MenuKey doesn’t.
That is, if you hit shift-command-T and there is only a command-T item,
MDEF_MenuKey returns 0, whereas MenuKey would have returned the command-T item.

The standard MenuKey routine allows you to select (via command keys) from a
hierarchical menu item whose parent menu item or parent menu is disabled. This is a
bug that MDEF_MenuKey fixes.

NowMenus incompatibility 6

NowMenus from NowSoftware is incompatible with custom MDEFs (not just Mercutio).
The only incompatibility relates to NowMenus’ ability to redefine key equivalents. Now
Software acknowledges this limitation of NowMenus. For more information, contact
utilities@nowsoft.com.
MDEF_GetVersion 6-40
©1992-1996 Ramon M. Felciano Rev. 9/5/96

1 C H A P T E R 7
Licensing and Distribution 7

This chapter describes the terms under which you may use Mercutio in your
applications or distribute the Mercutio package. We’ve tried to come up with a licensing
scheme that is fair and allows shareware and freeware developers to use Mercutio
without paying a licensing fee.

IMPORTANT

The “Mercutio Software License.pdf” document contains the legal software license. This
chapter is only here to help explain the license. ▲

Overview 7

Normally, to use Mercutio in your application, you license it from Digital Alchemy and
pay a licensing fee. A more attractive alternative is our Poor Man’s License, which
allows you to use Mercutio provide you credit us in your About box and manual, and
send us a copy of the software. If you are interested in licensing Mercutio for fee, or
according to other terms, contact Digital Alchemy directly.

Software License 7

Usage of the Mercutio MDEF is subject to a software license and licensing fee. The
license is in the accompanying file entitled “Mercutio Software License.pdf”. The
license lets you use and distribute the Mercutio MDEF in a single Macintosh application.
To do so, you must agree to do the following:

■ Notify us that you are using Mercutio. You can register online using a form available
through http://www-leland.stanford.edu/~felciano/da/mercutio/

■ Include a particular copyright statement in your documentation (see “Mercutio
Software License.pdf” for details)

■ Pay a licensing fee or use the Poor Man’s License as described below.
Overview 7-41
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 7

Licensing and Distribution
Use and Distribution of the Mercutio MDEF 7

You must include the following text in your manual or on-line documentation:

Mercutio MDEF from Digital Alchemy
Copyright © Ramon M. Felciano 1992-1996, All Rights Reserved

All licenses are non-transferable, single-application licenses, and include free upgrades
to future versions of Mercutio. Contact Digital Alchemy for details about licensing fees.

Licensing fees and terms are subject to change without notice. All technical support will
be provided via e-mail.

Poor Man’s License (summary) 7

The licensing fee is waived through the Poor Man’s License. Under the Poor Man’s
License, you can use Mercutio for free in your application if you do the following:

1. Include the following text in your About box:

Mercutio MDEF copyright © Ramon M. Felciano 1992-1996

2. Include the following in your User manual or on-line documentation:

Mercutio MDEF from Digital Alchemy
Copyright © Ramon M. Felciano 1992-1996, All Rights Reserved

3. Send us a copy of your product (including free upgrades to any future versions that
still use the MDEF). The address is provided in the front of this manual. If the
software includes full on-line documentation, you can send it via e-mail.

4. Notify us as soon as you start distributing software that contains Mercutio.

If you are developing shareware or freeware that will be distributed across the Internet,
you don’t need to explicitly send me a copy. Just notify me when the software is
released, tell me where I can find it, and include me in your database of registered users.

Other terms 7

As mentioned above, other licensing terms are available—contact Digital Alchemy for
details.

Use and Distribution of the Mercutio MDEF Package 7

The Mercutio MDEF Distribution Package contains a fully functional version of the
MDEF. You may copy, share or give the package to whomever you wish provide you
always distribute the package in its entirety and no modifications are made to its
contents; you may not sell, trade it, or otherwise charge for it.
Use and Distribution of the Mercutio MDEF 7-42
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 7

Licensing and Distribution
The Mercutio MDEF Distribution Package may be included as part of a CD-ROM or
other collection of developer or on-line materials provided you notify Digital Alchemy of
this fact.
Use and Distribution of the Mercutio MDEF Package 7-43
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 8

Troubleshooting

Troubleshooting 8

This chapter will help you solve any problems you might run into or answer question
you may have about Mercutio. Feel free to send us e-mail if you have any other
questions.

Basic checklist 8

If you are having trouble getting Mercutio to work, the following checklist may help
narrow down the problem.

n You must have the “.MDEF Font” FONT and NFNT resources installed in your
resource fork.

n The Mercutio MDEF must be installed in the resource fork of your application. It’s
resource ID must be 19999.

n You must assign tell your menus to use the Mercutio MDEF rather than the System
MDEF by setting the MDEF field of the MENU resource to 19999.

n If you want to use any Mercutio features other than the Shift- and Option- key
support, you must set your preferences with an Xmnu resource or programmatically
using the MDEF_SetMenuPrefs call.

n MDEF_SetMenuPrefs affects a single menu, so you must issue a separate call for
every menu.

n To be safe, call CalcMenuSize after every call to MDEF_SetMenuPrefs. This isn’t
required, but it will make sure that Mercutio keeps the height and width of menus
correct.

n You must replace every call to MenuKey with a call to MDEF_MenuKey.
n The last parameter to MDEF_MenuKey must be a handle to a menu that uses

Mercutio.
Basic checklist 8-44
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 8

Troubleshooting
Common symptoms and remedies 8

If you run into difficulties getting up and running with Mercutio, these tips may help
you overcome them.

Some of my key equivalents have become page up/down, function keys, etc.! 8

■ Mercutio maps lowercase key equivalent characters to non-printing keys such as page
up/down (See “Support for non-printing key-equivalents” on page 17.) If you
installed Mercutio and are getting these key equivalents unexpectedly, make sure the
characters in the keyEq field of the menu items are uppercase, not lowercase.

The width/height of my menu is all screwed up! 8

■ Make sure you call CalcMenuSize after you set the preferences for a given menu.

My callback routine isn’t being called! 8

■ Check the MenuPrefsRec or Xmnu resource for that menu to make sure that the
useCallbackFlag field has a style associated with it.

■ Make sure the menu item(s) in question have that style bit set.

■ Make sure you’ve called MDEF_SetCallbackProc to link your procedure to that
menu. Remember that you need to do this for every menu that uses that procedure.

My menu item isn’t appearing in the correct text style. 8

■ If that style is missing, you are probably using it as a feature flag. Check the
MenuPrefsRec or Xmnu resource for that menu.

All I get is the Shift- and Option- modifiers. 8

■ Remember that the only features that work “out of the box” are Shift- and Option-. If
you want your menus to support the Control-key, dynamic items, or item callbacks,
you must set those preferences with MDEF_SetMenuPrefs. See “MenuPrefsRec” on
page 10.

My menu items have extra modifier keys. 8

■ You have some extra feature flags set. Check the MenuPrefsRec or Xmnu resource for
that menu, as wells as the style bit settings for the menu items in question.

How can I have different key equivalent characters in the alternates for a given
dynamic item? 8

■ You can’t.
Common symptoms and remedies 8-45
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 8

Troubleshooting
The modifier keys show up correctly, but the menu doesn’t respond to keypresses8

■ Make sure you are calling MDEF_MenuKey, not the Toolbox MenuKey routine.

■ Make sure the last parameter to MDEF_MenuKey is a menuHandle for a menu that
uses Mercutio.

ResEdit complains about illegal fields in the Xmnu TMPL resource. 8

■ You’re probably using the TMPL resource designed for Resorcerer. Copy a fresh on
from the “Xmnu Template for Resedit” file.

My icons are being drawn smaller than normal. 8

■ Check the resource ID of the icons in question. Remember that, by default, Mercutio
draws any icon with a resource ID between 500 and 512 as a small icon. This range
can be change programmatically—See “Support for small icons” on page 13.

My popup menu isn’t appearing in Geneva 9 point anymore 8

■ Version 1.3 now supports drawing popup menus in the window font. Look at the
Sample Code to see how this is done. If the routines from the Sample Code don’t work
for you, contact us.

Frequently Asked Questions 8

If you have other questions about Mercutio, these may answer them for you. If not,
please feel free to contact Digital Alchemy directly.

What menu do I need to pass into the API rou;tines?? 8

You can pass any menu that uses Mercutio. The menu parameter that all the API routines
have simply gives them a way to find Mercutio by examining the MDEF field of the
menuHandle.

Our product includes three applications that use Mercutio. How many licenses do
we need? 8

Three—a single license covers a single Macintosh application. However, to take
advantage of the Poor Man’s License, you only need to send one copy of the product,
assuming it includes all three applications.

The credit information should be in all three About boxes and user manuals.

Does the license include upgrades to Mercutio? 8

Yes. As long as you abide by the terms of the license, you can use any future versions of
Mercutio.
Frequently Asked Questions 8-46
©1992-1996 Ramon M. Felciano Rev. 9/5/96

C H A P T E R 8

Troubleshooting
What about upgrades to my product? 8

If you are taking advantage of the Poor Man’s License, you should send me a copy
whenever you release a product upgrade.

To use the Poor Man’s License, is it OK if we include your name in the Read Me file
instead of the About box? 8

No.

To use the Poor Man’s License, what text needs to be displayed in the About box /
user manual? 8

Use MDEF_GetCopyright to get the correct copyright notice.

Why is this thing called “Mercutio” anyway? 8

When I first started programming Mercutio, I was taking a Shakespeare class at Stanford.
Part of the class included playing out selected scenes from the plays we were reading; I
played Mercutio, Romeo’s hothead brother, and was pretty immersed in the character at
the time.

In other words, it seemed like a good idea at the time. :)

What was the “Shakespeare MDEF Collection” and what happened to it? 8

Mercutio 1.0 was first released in early 1992. Many developers requested features such as
additional modifier keys and support for non alphanumeric key-equivalents. Including
all of the features in a single MDEF would have used up all of the style bits; the
Shakespeare MDEF Collection was to address these requests by providing a suite of
MDEFs with a variety of feature combinations. We subsequently came upon the idea of
storing the style-bit–to–feature mapping external to the MDEF, which allowed us to
provide all the features and still let developers choose which style-bits to give up. This
obviated the need for a collection of MDEFs.

The Shakespeare MDEF Collection may still make an appearance sometime in the future
once it becomes unrealistic to add more features to Mercutio. Until then, however, we’ll
leave it to the Halls of Vaporware fame!
Frequently Asked Questions 8-47
©1992-1996 Ramon M. Felciano Rev. 9/5/96

Frequently Asked Questions 8-48
©1992-1996 Ramon M. Felciano Rev. 9/5/96

Glossary

Callback item A menu item that has its
useCallbackFlag set so that Mercutio calls a
callback procedure before displaying the item. See
also callback procedure.

Callback procedure An application procedure
that can perform modifications on menu item
data before the menu item is displayed. Mercutio
calls this routine for items that have their
useCallbackFlag set. See also callback item.

Dynamic item An item that changes
appearance and behavior depending on what
modifier keys are being held down. A dynamic
item is controlled by a set of item alternates, each
of which represents a different appearance and
behavior for the item. For example, a dynamic
item might be controlled by two alternates: the
default one, and one that shows up if the user
holds down the Option-key. See also item
alternates.

Feature flag A style bit used to turn a Mercutio
feature on or off for a given menu item. This is the
way Mercutio determines which modifier keys a
menu item uses, whether it is a dynamic item, etc.

Feature template A record that determines
which style bits in the menu item’s style field will
be used as style flags and which ones will be used
as feature flags. See also feature flag, style flag.

Item alternates A set of menu items, grouped
sequentially in MENU resource, that can appear at
the same location in a menu depending on what
modifiers are being held down. See also dynamic
items.

Mercutio menu A menu controlled by the
Mercutio MDEF.

Modifier keys The Shift, Option, Command,
Control, and Caps Lock keys. For the purposes of
use with Mercutio, the Caps Lock key is ignored.

Non-printing keys Keys on the Macintosh
keyboard that don’t typically have ASCII
representations and don’t appear in printed
documents. Examples are the function keys,
arrow keys, page up and page down.

Poor Man’s License The no-fee license through
which you can use Mercutio by including certain
copyright credits and sending us a copy of your
program.

Style-bit remapping The mechanism by which
Mercutio interprets certain style bits as feature
flags instead of style flags. See also feature flag,
style flag.

Style flag A style bit used to turn a text style on
or off for a given menu item. This is the way style
bits are normally used by the toolbox and the
System MDEF.

	Inside the Mercutio MDEF
	The Mercutio MDEF Package
	If you’re upgrading…
	Conventions Used in this Manual
	Special Fonts
	Types of Notes

	Technical Support
	Quickstart!

	Basic Architecture
	Style-bit remapping
	Feature Templates
	‘Xmnu’ resource

	Mercutio and Apple Guide
	Data Structures
	FlexStyle
	MenuPrefsRec
	MenuResPrefs

	Using Mercutio
	Extended Icon Support
	Support for small icons

	Extended key equivalents
	Support for all modifier keys
	MDEF_MenuKey
	Modifier-defaults
	Using modifier-defaults to add key equivalents to ...

	Support for non-printing key-equivalents
	Use ‘.MDEF Font’ for menu symbols

	Dynamic items
	Using Dynamic Items in Mercutio

	Callback items
	The Callback Procedure
	RichItemData
	ItemFlagsRec

	Mercutio and resource IDs

	The MDEF Messages
	Mercutio API Routines
	Compatibility
	Saving MENU resources
	Hierarchical menu glitch
	Better scroll positioning
	MenuKey compatibility
	NowMenus incompatibility

	Licensing and Distribution
	Overview
	Software License
	Use and Distribution of the Mercutio MDEF
	Poor Man’s License (summary)
	Other terms

	Use and Distribution of the Mercutio MDEF Package

	Troubleshooting
	Basic checklist
	Common symptoms and remedies
	Frequently Asked Questions

